ose-code-templates

OpenSourceEconomics

Aug 13, 2020

4

Embarissingly parallel loop
Numba parallel
MPI main-child application

Powered by

Python Module Index

Index

CONTENTS

13
15

17

ose-code-templates

CONTENTS 1

https://opensource.org/licenses/MIT
https://github.com/OpenSourceEconomics/ose-code-templates/actions?query=workflow%3ACI
https://codecov.io/gh/OpenSourceEconomics/ose-code-templates
https://OpenSourceEconomics.zulipchat.com
https://ose-code-templates.readthedocs.io/en/latest/?badge=latest

ose-code-templates

2 CONTENTS

CHAPTER
ONE

EMBARISSINGLY PARALLEL LOOP

1.1 Core functions

Core functions for template

core_functions.distribute_tasks (func_task, tasks, num_proc=1, is_distributed=False)
Distribute workload.

This function distributes the workload using the multiprocessing or mpi4py library. It simply creates a
pool of processes that allow to work on the tasks using shared or distributed memory.

Notes
We need to ensure that the number of processes is never larger as the number of tasks as otherwise the MPI
implementation does not terminate properly.

¢ MP Pool, see here for details

e MPI Pool, see here for details

1.2 Test integration

Integration tests.
This module contains the integration tests that all the individual units are combined and tested together.

test_integration.get_random_ request ()
Random test case.

This function sets up a random test case that differs depending on whether MPI capabilities are available or not.

test_integration.test_1()
Test a random request.

This test simply evaluates a random request. It automatically checks whether a distributed evaluation is an
option.

test_integration.test_2()
Varying the number of processes.

This test evaluates the same request with different number of processes and ensures that the amount resources
do not matter for the results.

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.Pool
https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html#mpipoolexecutor

ose-code-templates

test_integration.test_3()
Alternating between shared and distributed memory.

This test evaluates the same request using the multiprocessing and mpi4py library and ensures that both
yield the same result.

We show how to parallelize a loop using the multiprocessing and mpidpy. The setup allows to seamlessly
switch between shared and distributed memory computing.

4 Chapter 1. Embarissingly parallel loop

CHAPTER
TWO

NUMBA PARALLEL

import numpy as np
from numba import prange, njit, guvectorize

Lets first get some test resources. The names and the structure from the examples are taken from the calculation of the
expected value function in respy. The original function can be found here.

: wages = np.ones ((100, 4))

nonpecs = np.ones ((100, 4))
continuation_values = np.ones((100, 4))
period_draws_emax_risk = np.ones((50, 4))
delta = 0.95

2.1 Parallelization of @jit functions

numba offers automatic parallelization of jit functions. This can either happen implicit on array operations or explicit
with the keyword statement parallel=True and e.g. parralel loops with prange. The resources for this can be
found here.

@njit (parallel=True)
def parralel_loop(wages, nonpecs, continuation_values, draws, delta):

num_states, n_ch = wages.shape
n_draws, n_choices = draws.shape
out = 0

for k in prange (num_states):
for i in prange (n_draws) :
for j in prange (n_choices):
out += (
wages [k, j] * draws[i, 7]
+ nonpecs [k, Jl
+ delta = continuation_valuesl[k, Jj]

return out

https://respy.readthedocs.io/en/latest/
https://github.com/OpenSourceEconomics/respy/blob/master/respy/shared.py
https://numba.pydata.org/numba-doc/latest/user/parallel.html

ose-code-templates

2.2 Diagnostics

When calling an explicit parallelized function, numba tries to create separate calculations to run multiple kernels or
threads. The optimization behavior can be inspected by using func.parallel diagnostics (level=4).

The levels can vary from one to four. The resources to this can be found here.

An example of the two things above:
parralel_loop(

wages, nonpecs, continuation_values, period_draws_emax_risk, delta
)

parralel_loop.parallel_diagnostics (level=4)

Parallel Accelerator Optimizing: Function parralel_loop, <ipython-
input-3-cf£75dd448160> (1)

Parallel loop listing for Function parralel_loop, <ipython-input-3-c£75dd448160> (1)

——— | loop #ID
@nijit (parallel=True) \
def parralel_loop(wages, nonpecs, continuation_values, draws, delta): |
num_states, n_ch = wages.shape
n_draws, n_choices = draws.shape
out = 0 \
for 1 in prange (num_states) t—————————— = | #2
for i in prange (n_draws) :——————————————— | #1
for j in prange(n_choices) :————————-——————————————— | #0
out += (

\

wages[1l, j] * draws[i, 7]

+ nonpecs[1l, 7]

+ delta » continuation_values[l, 7]
\
\
\

return out

————————————————————————————————— Fusing loops —————————————"——"——————————————————
Attempting fusion of parallel loops (combines loops with similar properties)...
————————————————————————————— Before Optimisation -———---------------——
Parallel region O0:
+--2 (parallel)

+--1 (parallel)

+--0 (parallel)

Parallel region O0:
+--2 (parallel)
+--1 (serial)
+-—-0 (serial)

Parallel region 0 (loop #2) had 0 loop(s) fused and 2 loop(s) serialized as part
of the larger parallel loop (#2).

(continues on next page)

6 Chapter 2. Numba parallel

https://numba.pydata.org/numba-doc/latest/user/parallel.html#diagnostics

ose-code-templates

(continued from previous page)

Allocation hoisting:
No allocation hoisting found

Instruction hoisting:
loop #2:
Failed to hoist the following:
dependency: out_4 = out.3

2.3 Parallelization of @guvectorize functions

When using @guvectorize, you can define functions on multiple arrays, which then can be parallelized across the
entries of the arrays with target="parallel”. Details to @guvectorize can be found here.

Qguvectorize (
("f8(:], £8(:], £8[:], £8[:, :1, £8, f8[:]1"],
"(n_choices), (n_choices), (n_choices), (n_draws, n_choices), () -—> ()",

nopython=True,
target="parallel",

def calculate_expected_value_functions (
wages, nonpecs, continuation_values, draws, delta, expected_value_functions

n_draws, n_choices = draws.shape

expected_value_functions[0] = 0

for i in range (n_draws) :
max_value_functions = 0

for j in range(n_choices):
value_function = (
wages[j] * draws[i, 7J]
+ nonpecs|[j]
+ delta % continuation_values|[j]

if value_function > max_value_functions:
max_value_functions = value_function

expected_value_functions[0] += max_value_functions

expected_value_functions[0] /= n_draws

The statement target="parallel” does not explicitly state that the code inside the @guvectorize function
is parallelized itself. However, one can rule out this possibility, if the function diagnosed with the tools described
above does not offer any parallelization. Thus, to my knowledge, there is no explicit possibility to fix a parallelization
structure. One can only design the code, such that the intended parallelization happens when the @Qguvectorized
function is called.

We collect resources and demonstrate parallelization with numba. Our focus lies on the analysis of nested parallelism

2.3. Parallelization of gguvectorize functions 7

https://numba.pydata.org/numba-doc/latest/reference/jit-compilation.html#numba.guvectorize

ose-code-templates

and the working example is inspired by respy.

8 Chapter 2. Numba parallel

CHAPTER
THREE

MPI MAIN-CHILD APPLICATION

We illustrate the concept of a main-child application using our research code respy. As a use case, we are interested
in capturing the uncertainties in the model’s predictions about average final schooling. For that purpose we start a
main process that distributes sampled parameter values from the imposed distribution of the discount factor and the
return to schooling.

We can start the script using the terminal.

mpiexec -n 1 -usize 5 python main.py

This starts the main process and allows to create up to five additional child processes.

import shutil
import glob
import sys
import os

if "PMI_SIZE" not in os.environ.keys():
raise AssertionError ("requires MPI access")
from mpidpy import MPI

import chaospy as cp
import numpy as np

from auxiliary import aggregate_results
from auxiliary import TAGS

if name == "_ _main_ ":

We specify the number of draws and number of children.
num_samples, num_children = 5, 2

We draw a sample from the joint distribution of the parameters that is_
—subsequently

distributed to the child processes.

distribution = cp.J(cp.Uniform(0.92, 0.98), cp.Uniform(0.03, 0.08))

samples = distribution.sample (num_samples, rule="random").T
info = MPI.Info.Create()
info.update ({"wdir": os.getcwd() })

We start all child processes and make sure they can work in their own,
—respective directory.
[shutil.rmtree (dirname) for dirname in glob.glob ("subdir_ child +")]

(continues on next page)

ose-code-templates

(continued from previous page)

file_ = os.path.dirname (os.path.realpath(file)) + "/child.py"
comm = MPI.COMM_SELF.Spawn (
sys.executable, args=[file_], maxprocs=num_children, info=info

We send all problem-specific information once and for all.
prob_info = dict ()

prob_info["num_params"] = samples.shape[l]

comm.bcast (prob_info, root=MPI.ROOT)

status = MPI.Status|()
for sample in samples:

comm.recv (status=status)
rank_sender = status.Get_source ()

comm. send (None, tag=TAGS.RUN, dest=rank_sender)

sample = np.array (sample, dtype="float64d")
comm. Send ([sample, MPI.DOUBLE], dest=rank_sender)

We are done and now terminate all child processes properly and finally the turn,
—~off the

communicator. We need for all to acknowledge the receipt to make sure we do not,
—continue here

before all tasks are not only started but actually finished.

[comm. send (None, tag=TAGS.EXIT, dest=rank) for rank in range (num_children)]

[comm.recv () for rank in range (num_children)]

comm.Disconnect ()

rslt = aggregate_results()

The behavior of the child processes is governed in the following script.

#!/usr/bin/env python
""NThis script provides all capabilities for the child processes."""

import os
In this script we only have explicit use of MPI as our level of parallelism. This,,

—needs to be
done right at the beginning of the script.

update = {
"NUMBA_NUM_THREADS": "1",
"OMP_NUM_THREADS": "1",
"OPENBLAS_NUM_THREADS": "1",
"NUMEXPR_NUM_THREADS": "1",
"MKL_NUM_THREADS": "1",

}

os.environ.update (update)

from mpidpy import MPI
import pandas as pd
import numpy as np
import respy as rp

from auxiliary import TAGS

(continues on next page)

10 Chapter 3. MPI main-child application

ose-code-templates

(continued from previous page)

if _ name_ == "_ _main_ ":
comm = MPI.Comm.Get_parent ()
num_slaves, rank = comm.Get_size (), comm.Get_rank ()

status = MPI.Status /()

We need some additional task-specific information.
prob_info = comm.bcast (None)

subdir = f"subdir _child_{rank/"
os.mkdir (subdir)
os.chdir (subdir)

We now set up the simulation function of ‘respy and receive some task-
—specific information.

params, options, df = rp.get_example_model ("kw_94_ one")

simulate = rp.get_simulate_func (params, options)

rslt = list ()
while True:

Signal readiness
comm. send (None, dest=0)

Receive instructions and act accordingly.
comm.recv (status=status)
tag = status.Get_tag()

if tag == TAGS.EXIT:
We set up a container to store the results.
df = pd.DataFrame (rslt, columns=["goi", "delta", "exp_edu"])
df.index.name = "sample"
df .to_pickle(f"rslt _child_{rank/.pkl")

Now we are ready to acknowledge completion and disconnect.
comm. send (None, dest=0)

comm.Disconnect ()

break

elif tag == TAGS.RUN:
We are called to sample the quantity of interest and need to update the,
—parameters
accordingly.
sample = np.empty (prob_info["num params"], dtype="float64")
comm.Recv ([sample, MPI.DOUBLE])

params.loc["delta", "value"],

params.loc[("wage_a", "exp_edu"), "value"],
) = sample
stat = simulate (params) .groupby ("Identifier") ["Experience_Edu"] .max() .
—mean ()
rslt.append([stat, xsample])
else:

(continues on next page)

11

ose-code-templates

(continued from previous page)

raise AssertionError

We show how to set up a main-child application. We use the example of uncertainty propagation using respy as the
motivating use-case.

12 Chapter 3. MPI main-child application

CHAPTER
FOUR

POWERED BY

13

https://open-econ.org

ose-code-templates

14 Chapter 4. Powered by

PYTHON MODULE INDEX

C

core_functions,3

t

test_integration,3

15

ose-code-templates

16 Python Module Index

INDEX

C

core_functions
module, 3

D

distribute_tasks () (in module core_functions), 3

G

get_random_request () (in module
test_integration), 3

M

module
core_functions,3
test_integration,3

T

test_1 () (in module test_integration), 3
test_2 () (in module test_integration), 3
test_3 () (in module test_integration), 3
test_integration

module, 3

17

	Embarissingly parallel loop
	Numba parallel
	MPI main-child application
	Powered by
	Python Module Index
	Index

